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Objectives 2% 2RGINEES

» Analyze and examine the characteristics of three different datasets: SKIPP’D, CUEE, SIRTA.

 Evaluate the performance of SUNSET, SolarNet, Unet, on the three datasets.

» Process and extract additional features, e.g., cloud volume, and cloud mask.

» Gauge the impact of additional features from sky images on the SIRTA dataset and record
any challenges occurred during building the benchmarking system.

Introduction 3
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CHULA SNGINEERING
SUNSET (Sun et al., 2019) AR N AN
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SolarNet (Feng et al., 2020)
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Unet (Nie et al., 2020) ZANENAN
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Generative omnimatte (Lee et al., 2024) s el e
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CHULA 2NGINEERING
Outcomes LA 2NGINEEF

1. Data exploratory :
1.1) Data exploratory on SKIPP’'D, CUEE, SIRTA datasets.
2. Image processing techniques :
2.1) Perform Rol extraction and lens distortion correction.
2.2) Training with baseline settings.
2.3) Training with image processing techniques.
3. Cloud mask and cloud foreground :
3.1) Cloud mask and cloud foreground extraction using a baseline method.
3.2) Cloud mask and cloud foreground extraction using a generative omnimatte.

3.3) Training with cloud mask and cloud foreground.

Method & Results 10
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Data exploration

Dataset SKIPP'D CUEE SIRTA
Camera Model DS-2CD6365G0OE-IVS | DS-2CD1021G0-1 | EKO SRF-02
Resolution 64 x 64 1920 x 1080 64 x 64
Lens Type Fisheye lens DSLR lens Fisheye lens
Capture Interval 1 minute 1 minute 1-2 minute
Start Date 09/03/2017 15/03/2023 01/01/2023
End Date 26/10/2019 03/11/2023 31/12/2023
Start Time 06:00 06:00 05:00

End Time Not over 20:00 18:00 Not over 22:00

Data exploration 12



Data exploration
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Foundation toward Innova
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Image processing technique e
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Training with processed data result

CHULA 3NGINEERING

Foundation toward Innovation

Then trained SUNSET, SolarNet, Unet on processed SIRTA dataset.

Model Learning loss. | Parameter setting Model parameters | Train on AE | Train on SE
MAE | RMSE | MAE | RMSE
SUNSET MAE Dense Size: 1024, Div num filter: 1 | 26296497 38.97 | 84.41 E -
RMSE Dense Size: 1024, Div num filter: 4 | 7367373 - - 45.04 | 86.24
Unet MAE Batch Size: 128, Drop rate: 0.4 306120 2499 | 39.89 E -
RMSE Batch Size: 128, Drop rate: 0.4 306120 - - 24.08 | 41.02
Solarnet MAE Batch Size: 64, Num layer: 4 14867974 72.65 | 121.16 - E
RMSE Batch Size: 16, Num layer: 4 14867974 - - 65.03 | 106.86
Model Learning loss. | Parameter setting Model parameters | Train on AE | Train on SE
MAE | RMSE | MAE | RMSE
SUNSET MAE Dense Size: 1024, Div num filter: 1 | 26296497 4291 | 88.45 - -
RMSE Dense Size:1024, Div num filter: 4 | 3237081 - B 45.86 | 85.65
Unet MAE Batch Size:128, Drop rate:0.4 306120 20.01 | 48.46 - -
RMSE Batch Size:128, Drop rate:0.4 306120 - - 29.66 | 48.12
Solarnet MAE Batch Size:16, Num layer: 4 14867974 66.79 | 116.81 - -
RMSE Batch Size:16, Num layer: 4 14867974 E B 67.50 | 110.16

Image processing technique

Baseline model

Processed image

16
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Cloud mask and cloud
foreground extraction



Improve model performance with additional CHULZ: ZNEINEERING
cloud masking channels

This study, we have extracted additional information from sky image as cloud mask to improve
model performance (4 cloud masking methods).

1. Cloud mask extraction with baseline (Nie et al., 2020)

2. Cloud foreground extraction with baseline (Nie et al., 2020)

3. Cloud mask extraction using generative omnimatte (Lee et al., 2024)

4. Cloud foreground extraction using generative omnimatte (Lee et al., 2024)

Cloud mask and cloud foreground extraction 18



Cloud mask extraction (Nie et al., 2020)
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Cloud foreground extraction (Nie et al., 2020)  CHULA 2NGINEERING

Sky image Cloud mask Cloud foreground

Cloud mask and cloud foreground extraction 20



Nie et al. method and generative omnimatte CHULZ: ZNEINEERING

Nie et al. method Generative omnimatte

Classifie pixels
by calculating
NRBR

Cloud mask and cloud foreground extraction 21



Improve cloud cover extraction CHULZ: ZNEINEERING

1. Preprocessing sky image :
Preprocessing sky image on SIRTA datasets.
2. Train text-to-image generation model :
To generate a clear sky image by specifying brightness and clarity through text.
3. Train generative omnimatte :
To generate cloud mask and cloud foreground layer by using sky image and clear sky image as

inputs

Cloud mask and cloud foreground extraction 22



Improve cloud cover extraction CHULZ: ZNEINEERING

S MMEGEE >

Nie et al. method
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Generative omnimatte learning loss CHULZ: ZNEINEERING

Loss function

)\sparsityLsparsity + Lmask (Base model)
Mask loss
Liask = ||m — a|,

Sparsity loss

Lsparsz'ty = ||a ||1 Asparsity = 0.001

Cloud mask and cloud foreground extraction 24



Generative omnimatte learning loss CHULZ: ZNEINEERING

Loss function Asparsity = Amask = 0.001

Lrecon + )\sparsityLsparsity + Ama,skLma,sk (Tranfer model)

Reconstruction loss

Lyecon = |[I — Irecon||y = [[I — alfg + (1 — a)Ipg]], (Comb-off)

Lyecon = |[I — Irecon|ly = |[I — a (L + Ing) + (1 — a)Ipg ], (Comb-on)
Sparsity loss Mask loss

Lspa'r'sity = HOA ||1 Liask = ||m - a||2

Cloud mask and cloud foreground extraction 25
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Generative omnimatte learning loss CHULA SNGINEERING

% = Elementwise multiplication
Model Generative Model |

I masked,bg

I cloud

Irn‘nn

Cloud mask and cloud foreground extraction 26



Clear-sky image generation CHULZ: ZNEINEERING

Actual image:

(a.1) 10:30 (b.1) 12:12 (c.1) 16:40

Gen. sky image:

(a.2) 10:30 (b.2) 12:12 (c.2) 16:40

Cloud mask and cloud foreground extraction 27



Cloud mask and foreground extraction using ~ “":2 2NGNEERING

generative omnimatte

Sky image Cloud mask Cloud foreground
(Generative omnimatte) (Generative omnimatte)

Cloud mask and cloud foreground extraction 28
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Cloud mask and cloud foreground extraction results™

w . Baseline model

(a) Sky image (b) Cloud mask
a) Sky image ) Clear sky image (c) Cloud mask ) Cloud foreground
(a) Sky image (b) Clear sky image (c) Cloud mask ) Cloud foreground

Cloud mask and cloud foreground extraction 29



Generative omnimatte results CHULA SNGINEERING

Foundation toward Innovation

Quality of the predicted soft-decision mask

Scatter plot of cloud coverage between NRBR method vs Neural Network Scatter plot of cloud coverage between NRBR method vs Neural Network
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_ . CHULA NGINEERIN
Training with cloud mask and cloud foreground = R

We have trained SUNSET on SIRTA dataset with additional cloud masking channels to improve

model performance.

Il ‘
e ) *
. . . ) ‘l ‘ i
Original images _ Neural Network : M" wa\.\ | /MKWLA |
LAY £ Al
b R Ly mprove
\M
Mb b
Original images Cloud mask Neural Network z .{M t‘v'*'\'ﬁ& ‘W I
h 4 \w\m&f*\ﬂ\ m&”‘l%’
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. . CHULA NGINEERING
Training with cloud mask and cloud foreground = AN

Due to limited CPU RAM, we have trained the new SUNSET model using only the first 6 months of

the SIRTA dataset for the baseline model and all cloud mask experiments.

64x64x3 (unit8) 64x64x3 (unit8) 64x64x6 (float32)

Original images Processed images Original images e Cloud mask

Neural Network

Irradiance

Cloud mask and cloud foreground extraction 32



Training with cloud mask and cloud foreground

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Experiment 1 :
Experiment 2
Experiment 3
Experiment 4

Cloud mask extraction with baseline (Nie et al., 2020)

: Cloud foreground extraction with baseline (Nie et al., 2020)
: Cloud mask extraction using generative omnimatte (Lee et al., 2024)
: Cloud foreground extraction using generative omnimatte (Lee et al., 2024)

i Learning loss: MAE
Evaluation
Original | Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4
MAE 32.74 36.51 33.93 33.28 36.79
RMSE 76.25 78.80 75.77 75.22 80.22
" Learning loss: RMSE
Evaluation
Original | Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4
MAE 42.91 34.76 38.83 36.82 39.12
RMSE 79.03 73.32 77.06 74.08 76.69

Cloud mask and cloud foreground extraction 33
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. CHULA >NGINEERING
Conclusion A 2NGINEEF

* SUNSET consistently achieves the best performance in the forecasting task due to receive
both Image and timeseries data as a input

* This study can enhance the SUNSET model’'s performance on the SIRTA dataset by
incorporated an additional cloud mask channel method 1, resulting in an approximate 3%
improvement in RMSE

Problems, obstacles, and solutions

» Limited memory on the CPU and GPU RAM poses a significant challenge in the handling of
high-resolution images. Consequently, the original images, stored in the database at full
resolution, must be downscaled to 64x64 pixels for model training. This reduction in
resolution can lead to a loss of image quality and critical features, which may affect the
accuracy of the results and complicate their interpretation. To overcome this limitation, an
on-the-fly data generation approach can be employed.

| Conclusion __ JEEE
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During the preparation of this work, ChatGPT has been used solely
for enhancing the readability and language.

After using this tool, we have reviewed and edited the content as needed
and take the full responsibility for the content.

Kanawut Suwandee
Kongpob In-odd
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